We are independent & ad-supported. We may earn a commission for purchases made through our links.
Advertiser Disclosure
Our website is an independent, advertising-supported platform. We provide our content free of charge to our readers, and to keep it that way, we rely on revenue generated through advertisements and affiliate partnerships. This means that when you click on certain links on our site and make a purchase, we may earn a commission. Learn more.
How We Make Money
We sustain our operations through affiliate commissions and advertising. If you click on an affiliate link and make a purchase, we may receive a commission from the merchant at no additional cost to you. We also display advertisements on our website, which help generate revenue to support our work and keep our content free for readers. Our editorial team operates independently of our advertising and affiliate partnerships to ensure that our content remains unbiased and focused on providing you with the best information and recommendations based on thorough research and honest evaluations. To remain transparent, we’ve provided a list of our current affiliate partners here.
Economy

Our Promise to you

Founded in 2002, our company has been a trusted resource for readers seeking informative and engaging content. Our dedication to quality remains unwavering—and will never change. We follow a strict editorial policy, ensuring that our content is authored by highly qualified professionals and edited by subject matter experts. This guarantees that everything we publish is objective, accurate, and trustworthy.

Over the years, we've refined our approach to cover a wide range of topics, providing readers with reliable and practical advice to enhance their knowledge and skills. That's why millions of readers turn to us each year. Join us in celebrating the joy of learning, guided by standards you can trust.

What Are the Different Types of Quantitative Forecasting Techniques?

By Kaiser Castro
Updated: May 16, 2024
Views: 26,523
Share

Quantitative forecasting techniques typically call for the analysis of statistics and raw data. The simple moving method, weight moving method, exponential smoothing method, and time series analysis are quantitative forecasting techniques that are usually used by economists and data analysts. These techniques are used to evaluate numerical data while considering changes in trends. Accurate forecasting is used by businesses to help make sound business decisions.

The simple moving method of forecasting is a form of quantitative research that is based on an adjustable set period. This method is used to show trends over a period of time by evaluating raw data, usually over the course of 30 days or many months. Every month, the older information is replaced with the information of the new month. For example, if data is evaluated over the course of August and September, then the numbers from August will be removed and be replaced by September's information to see if there are any trends in the data.

Similar to the simple moving method, a weight moving method dissects the information during an evaluation period but with different weights given to each month. This method of data evaluation is usually used to evaluate trends with expected monthly changes; the sales of seasonal clothing, for example, can benefit from these types of quantitative forecasting techniques. If an economist predicts that more people will be purchasing shorts during the summer months, a standard multiplier can be applied to this window of time, which will typically increase the accuracy of budget estimates during those months.

These quantitative forecasting techniques tend to focus on older data. The exponential smoothing method evaluates more recent information. This method is good for researching data that changes rapidly, such as sales figures in a temperamental market. For example, if a business analyst is trying to predict next month's sales, then exponential smoothing will call upon the data on the recent days leading to this new month to predict projected sales.

Quantitative forecasting techniques will sometimes call for analyzing time series. A time series is an observation of data at different points in time. Examples include analysis of daily stock prices, weekly sales goals, and monthly expenses. These techniques examine the underlying context of data over a large period of time. This technique usually measures historical data using line charts to forecast future events, allowing an economist to identify characteristics in data that can be used in making predictions about future outcomes.

Share
SmartCapitalMind is dedicated to providing accurate and trustworthy information. We carefully select reputable sources and employ a rigorous fact-checking process to maintain the highest standards. To learn more about our commitment to accuracy, read our editorial process.
Discussion Comments
Share
https://www.smartcapitalmind.com/what-are-the-different-types-of-quantitative-forecasting-techniques.htm
Copy this link
SmartCapitalMind, in your inbox

Our latest articles, guides, and more, delivered daily.

SmartCapitalMind, in your inbox

Our latest articles, guides, and more, delivered daily.