We are independent & ad-supported. We may earn a commission for purchases made through our links.
Our website is an independent, advertising-supported platform. We provide our content free of charge to our readers, and to keep it that way, we rely on revenue generated through advertisements and affiliate partnerships. This means that when you click on certain links on our site and make a purchase, we may earn a commission. Learn more.
How We Make Money
We sustain our operations through affiliate commissions and advertising. If you click on an affiliate link and make a purchase, we may receive a commission from the merchant at no additional cost to you. We also display advertisements on our website, which help generate revenue to support our work and keep our content free for readers. Our editorial team operates independently of our advertising and affiliate partnerships to ensure that our content remains unbiased and focused on providing you with the best information and recommendations based on thorough research and honest evaluations. To remain transparent, we’ve provided a list of our current affiliate partners here.
Economy

## Our Promise to you

Founded in 2002, our company has been a trusted resource for readers seeking informative and engaging content. Our dedication to quality remains unwavering—and will never change. We follow a strict editorial policy, ensuring that our content is authored by highly qualified professionals and edited by subject matter experts. This guarantees that everything we publish is objective, accurate, and trustworthy.

Over the years, we've refined our approach to cover a wide range of topics, providing readers with reliable and practical advice to enhance their knowledge and skills. That's why millions of readers turn to us each year. Join us in celebrating the joy of learning, guided by standards you can trust.

# What is an Error Term?

By Andrew Burger
Updated: May 16, 2024
Views: 20,505

In statistics, an error term is the sum of the deviations of each actual observation from a model regression line. Regression analysis is used to establish the degree of correlation between two variables, one independent and one dependent, the result of which is a line that best "fits" the actually observed values of the dependent value in relation to the independent variable or variables. Put another way, an error term is the term in a model regression equation that tallies up and accounts for the unexplained difference between the actually observed values of the independent variable and the results predicted by the model. Hence, the error term is a measure of how accurately the regression model reflects the actual relationship between the independent and dependent variable or variables. The error term can indicate either that the model can be improved, such as by adding in another independent variable that explains some or all of the difference, or by randomness, meaning that the dependent and independent variable or variables are not correlated to any greater degree.

Also known as the residual term or disturbance term, according to mathematical convention, the error term is the last term in a model regression equation and is represented by the Greek letter epsilon (ε). Economists and financial industry professionals regularly make use of regression models, or at least their results, to better understand and forecast a wide range of relationships, such as how changes in the money supply are related to inflation, how stock market prices are related to unemployment rates or how changes in commodity prices affect specific companies in an economic sector. Hence, the error term is an important variable to keep in mind and keep track of in that it measures the degree to which any given model does not reflect, or account for, the actual relationship between the dependent and independent variables.

There are actually two types of error terms commonly used in regression analysis: absolute error and relative error. Absolute error is the error term as previously defined, the difference between the actually observed values of the independent variable and the results predicted by the model. Derived from this, relative error is defined as the absolute error divided by the exact value predicted by the model. Expressed in percentage terms, relative error is known as percent error, which is helpful because it puts the error term into greater perspective. For example, an error term of 1 when the predicted value is 10 is much worse than an error term of 1 when the predicted value is 1 million when attempting to come up with a regression model that shows how well two or more variables are correlated.

SmartCapitalMind is dedicated to providing accurate and trustworthy information. We carefully select reputable sources and employ a rigorous fact-checking process to maintain the highest standards. To learn more about our commitment to accuracy, read our editorial process.