We are independent & ad-supported. We may earn a commission for purchases made through our links.

Advertiser Disclosure

Our website is an independent, advertising-supported platform. We provide our content free of charge to our readers, and to keep it that way, we rely on revenue generated through advertisements and affiliate partnerships. This means that when you click on certain links on our site and make a purchase, we may earn a commission. Learn more.

How We Make Money

We sustain our operations through affiliate commissions and advertising. If you click on an affiliate link and make a purchase, we may receive a commission from the merchant at no additional cost to you. We also display advertisements on our website, which help generate revenue to support our work and keep our content free for readers. Our editorial team operates independently from our advertising and affiliate partnerships to ensure that our content remains unbiased and focused on providing you with the best information and recommendations based on thorough research and honest evaluations. To remain transparent, we’ve provided a list of our current affiliate partners here.

What is Compound Interest?

Tricia Christensen
Updated May 16, 2024
Our promise to you
SmartCapitalMind is dedicated to creating trustworthy, high-quality content that always prioritizes transparency, integrity, and inclusivity above all else. Our ensure that our content creation and review process includes rigorous fact-checking, evidence-based, and continual updates to ensure accuracy and reliability.

Our Promise to you

Founded in 2002, our company has been a trusted resource for readers seeking informative and engaging content. Our dedication to quality remains unwavering—and will never change. We follow a strict editorial policy, ensuring that our content is authored by highly qualified professionals and edited by subject matter experts. This guarantees that everything we publish is objective, accurate, and trustworthy.

Over the years, we've refined our approach to cover a wide range of topics, providing readers with reliable and practical advice to enhance their knowledge and skills. That's why millions of readers turn to us each year. Join us in celebrating the joy of learning, guided by standards you can trust.

Editorial Standards

At SmartCapitalMind, we are committed to creating content that you can trust. Our editorial process is designed to ensure that every piece of content we publish is accurate, reliable, and informative.

Our team of experienced writers and editors follows a strict set of guidelines to ensure the highest quality content. We conduct thorough research, fact-check all information, and rely on credible sources to back up our claims. Our content is reviewed by subject matter experts to ensure accuracy and clarity.

We believe in transparency and maintain editorial independence from our advertisers. Our team does not receive direct compensation from advertisers, allowing us to create unbiased content that prioritizes your interests.

Compound interest is interest calculated on the principal amount invested, which is then added to the principal amount, and compounded again. It can be earned daily, weekly, monthly or yearly. Generally, the more times an amount is compounded, the more money a person can make.

As long as a person leaves an interest earning account alone, by not removing money from it, he begins making more money on the investment (given a stable interest rate) because the money he earns is added back to the principle amount. It’s a simple fact that more money earning interest makes more money. Each time interest is compounded, the money earned gets added to the total.

A similar result can be seen by someone raising rabbits. If two bunnies produced a litter, and the person kept all those bunnies, then he might end up with eight rabbits. The original bunnies would keep on breeding, as would the new litter, and more and more rabbits would be produced. Compound interest won’t be quite that dramatic, unless the person is investing huge sums of money. The important parallel is that the first pair of bunnies (the original investment) and their offspring (interest) now combine together to produce yet more rabbits, and as combined, they will produce a great deal more than if they were sold off and separated.

Most investment firms, banks, and the like will state how often interest is compounded in an account. In some cases, the investment doesn’t compound, but earns what is called simple interest. This means that the investor only makes money on the amount he initially invested, and the profits are not reinvested to make more money.

Individuals can figure out exactly how much an investment will be worth in a few years with a scientific calculator. They also need to know the initial investment amount (principal or p), the rate of interest, (r), the number of years they plan to allow the investment to sit (years or y), and the number of times per year the investment will compound (t). Investors should remember that only a portion of the interest would be earned each month, so the interest amount would have to be divided by the total times interest gets compounded each year (t). The formula is as follows:

Total value = p(1 + r/t)ty

Putting this to work, in dollar amounts, someone might invest $10,000 US Dollars (USD) in a savings account that earns 5% interest per year and is compounded monthly. If the person leaves that money alone for five years, he could figure out exactly how much money he’d make in that time period, and the value of the account at the end of four years. The equation would look like this:

10,000(1 + 0.05/12)12 X 5 = $12,833.59

If the investor only earned simple interest, at even 5.5% per year, he wouldn’t make that much money:

10,000(1 + .055 X 5) = $12,750.00

One reason to understand compound interest is because some accounts that earn simple interest offer a higher yearly interest rate. If the investment is long term, however, the investor may make more money with a lower interest rate that compounds. On the other hand, if an investor knows that he’ll be removing the money after a year or two, a higher interest rate that is not compounded may be a better investment, than an account that compounds the interest but has a lower rate. Investors also shouldn't be daunted by these formulas; anyone who has access to the Internet can find hundreds of sites that offer interest calculators, and most of them are very easy to use.

SmartCapitalMind is dedicated to providing accurate and trustworthy information. We carefully select reputable sources and employ a rigorous fact-checking process to maintain the highest standards. To learn more about our commitment to accuracy, read our editorial process.
Tricia Christensen
By Tricia Christensen , Writer
With a Literature degree from Sonoma State University and years of experience as a SmartCapitalMind contributor, Tricia Christensen is based in Northern California and brings a wealth of knowledge and passion to her writing. Her wide-ranging interests include reading, writing, medicine, art, film, history, politics, ethics, and religion, all of which she incorporates into her informative articles. Tricia is currently working on her first novel.

Discussion Comments

By andrefk — On Jul 05, 2012

Could someone explain if compound interest is magnified with a larger base sum?

Which is the greater yield over 20 years: $10,000 in one account with interest of 5 percent or

£5,000 in two separate accounts, still at 5 percent?

By Fiorite — On Jun 02, 2010

Most financial equations can be done with a financial calculator or an online mortgage calculator, but it is nice to see that people still work the problems out long hand. I would like to ask if the formula is still the same when the interest compounds more than once a year? Could someone show me a formula that takes this into account? I wish learning financial math was mandatory when I was in high school.

By Alchemy — On Jun 01, 2010

Understanding compounding interest is also helpful in planning for a large purchase, or for retirement. Let’s say that I needed $40,000 for a down payment on a house in five years. Assume that I know of an investment vehicle that will return 11% per year, and I wanted to determine how much I would have to invest today so that I could walk away with $40,000 when the investment matures. To determine the present value of $40,000 I would use the following equation PV=FV[1/(1+i)^n]. (PV=Present Value, FV=Future Value, i=interest, and n=number of years). The equation would look like this: 40,000[1/(1+.05)^5]=31,341.05. I would have to put $31,341.05 into the investment to make an ROI of $40,000.

Tricia Christensen

Tricia Christensen


With a Literature degree from Sonoma State University and years of experience as a SmartCapitalMind contributor, Tricia...
Learn more
SmartCapitalMind, in your inbox

Our latest articles, guides, and more, delivered daily.

SmartCapitalMind, in your inbox

Our latest articles, guides, and more, delivered daily.